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Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in Americans, 
especially those under age 45.  TBI accounts for more than 500,000 emergency department visits 
annually (Nirula et al., 2003).  Closed head injury produces cerebral edema, hemorrhage, 
contusions, and ischemia.  Diffuse axonal injury (DAI) is also a common consequence of head 
trauma, and results from rotational acceleration and deceleration forces that shear axons.  DAI 
causes loss of consciousness at the moment of direct impact.  More chronically, DAI can result 
in long-term cognitive and psychiatric problems.   

Accurate evaluation of traumatic white matter injury is limited because conventional 
imaging techniques (a) tend to underestimate of the extent of injury; (b) often provide inadequate 
localization of axonal shearing within specific white matter tracts, for correlation with functional 
deficits; and (c) do not provide quantitative pathophysiological information that could be used to 
determine prognosis and to monitor the efficacy of therapeutic interventions.  For the detection 
of DAI, CT is mostly limited to depicting the small focal hemorrhages associated with axonal 
shearing injury.  Gradient echo T2*-weighted MR improves on CT through its better sensitivity 
to blood products, thereby demonstrating more lesions (Huisman et al., 2003).  However, 
pathologic studies demonstrate that only a minority of DAI lesions is associated with 
hemorrhage (Adams, 1984).  Spin echo T2-weighted MR techniques, especially fluid-attenuated 
inversion recovery (FLAIR) imaging, can detect many non-hemorrhagic foci of DAI (Hesselink 
et al., 1988; Mittl et al., 1994; Ashikaga et al., 1997) but still underestimate the true extent of 
traumatic white matter damage.   
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Diffusion-weighted imaging (DWI), which assesses the microscopic motion of water 
molecules in brain tissue, has improved the evaluation of TBI, especially for DAI, through its 
superior sensitivity to foci of acute shearing injury (Liu et al., 1999; Huisman et al., 2003).  The 
mean diffusivity (Dav) can be calculated as the spatially-averaged magnitude of water diffusion at 
each voxel of the diffusion-weighted image.  The Dav is most often decreased in acute axonal 
shearing injury, signifying reduced water diffusion, but can be increased or unchanged in a 
minority of lesions (Huisman et al., 2003).  Diffusion tensor imaging (DTI) offers additional 
advantages beyond older DWI techniques for the evaluation of traumatic axonal injury, through 
the sensitivity of quantitative measures such as fractional anisotropy (FA) to white matter 
integrity, as well as the ability of DTI to determine fiber orientations and delineate the 3-
dimensional course of white matter pathways (Pierpaoli et al., 1996; Conturo et al., 1999; Mori 
et al., 1999; Basser et al., 2000). 

These capabilities suggest that DTI may add value to conventional neuroimaging in 
patients with TBI.  A pilot DTI study has shown that FA may be even more sensitive for 
detecting acute DAI than conventional MR imaging or DWI (Arfanakis et al., 2002).  Three-
dimensional DTI fiber tractography has also been applied to delineate white matter pathways 
damaged by acute traumatic axonal shearing, with correlation to the resulting functional deficit 
(Le et al., 2005a).   Quantitative DTI parameters such as FA that reflect the microstructural 
characteristics of white matter may have prognostic value for patients with TBI.  Indeed, in 20 
acute TBI patients, FA showed better correlation with clinical outcome markers at hospital 
discharge than did Dav (Huisman et al., 2004).  Early changes in DTI parameters within a mean 
of 4 days after trauma was also found in another cohort of 20 patients, providing further support 
for the use of DTI as an early prognostic indicator of traumatic brain damage (Inglese et al., 
2005). 

DTI has been improved by the convergence of many recent technical advances, including 
high-field at 3T, high angular resolution with dozens of diffusion-encoding directions, multi-
channel phased-array head coils, and parallel imaging.  The use of high angular resolution for 
DTI produces more accurate measurements of fractional anisotropy than does using the 
minimum of six diffusion-encoding directions necessary to solve for the diffusion tensor, even if 
those six directions are repeated many times and averaged for improved SNR (Jones, 2004).  
Both 3T and multi-channel head coils result in improved SNR over what can be achieved at 1.5T 
with a traditional quadrature birdcage head coil.  Furthermore, the multi-channel head coils 
permits parallel imaging (Sodickson & Manning, 1997; Pruessmann et al., 1997).  Whereas 
parallel imaging degrades SNR for most pulse sequences, it can actually further boost SNR in 
single-shot EPI diffusion imaging with a judicious choice of acquisition parameters (Jaermann et 
al., 2004).  Parallel imaging performance also improves at high field, for a number of reasons 
that have been described in detail (Ohliger et al., 2003; Pruessmann, 2004), but is beyond the 
scope of this brief review.  Using high angular resolution 3T DTI with parallel imaging, whole-
brain coverage at 1.8-mm isotropic spatial resolution has been achieved in a study of TBI (Le et 
al., 2005b).  In this study, the greatest benefit of parallel imaging for 3T DTI was the striking 
reduction in susceptibility artifacts, which are particularly evident near tissue-air interfaces 
around the paranasal sinuses and mastoid sinuses.  This enables imaging of the inferior frontal 
lobes, temporal lobes, brainstem, and cerebellum with high anatomic fidelity, which was 
previously not possible with high-field DTI using single-shot EPI.  These regions near the skull 
base, especially the inferior frontal and temporal lobes, are the most common sites for 
contusions.  Susceptibility artifacts due to hemorrhage or metallic surgical hardware are also 
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mitigated by parallel image acquisition.  Thus, TBI represents an important clinical application 
for DTI using parallel imaging.   

At the current time, however, there is no consensus on the optimal method for detecting 
and analyzing DTI abnormalities in the setting of TBI.  Detecting abnormalities on FA maps of 
the brain can be more challenging than for conventional MR images.  Arfanakis et al. (1999) 
have observed in 5 mild TBI patients that the reduced FA caused by traumatic damage can be 
difficult to perceive by visual inspection, especially when there is neighboring gray matter or 
CSF that also has low FA values.  Evaluating white matter injury on conventional MR imaging 
involves qualitative assessment of signal intensity changes against a relatively uniform 
background within white matter.  In contradistinction, optimal detection of white matter injury 
on FA maps requires quantitative measurements of a parameter that is strongly heterogeneous 
throughout the brain.  Not only does FA vary between different white matter tracts in the normal 
human brain, but FA values also differ at various locations along a single white matter pathway.  
Whole-brain histograms of DTI parameters have been shown to be insensitive to TBI (Inglese et 
al., 2005), and also discard the regionally specific information inherent to DTI.  Prior 
quantitative DTI studies of TBI have used manually placed regions of interest (ROIs) to compare 
FA values between TBI patients and healthy volunteers (Arfanakis et al., 2002; Huisman et al., 
2004; Le et al., 2005a; Inglese et al., 2005).  This method of comparing DTI parameters in the 
same locations across subjects can be problematic, especially when applied to a patient 
population with marked heterogeneity in the location and extent of injury, such as in TBI.  Other 
drawbacks of manual ROI-based analysis include problems with intra-rater and inter-rater 
reproducibility, as well as the fact that only a small minority of brain regions can be examined in 
a reasonable amount of time by a single operator.   

Voxel-based analysis (VBA) represents an alternative approach and overcomes these last 
two limitations of manual ROI measurements, enabling automated reproducible statistical 
comparisons across subjects throughout the entire brain.  VBA methods such as statistical 
parametric mapping (SPM) require sophisticated spatial registration and normalization of the 
images to remove anatomical confounds (Friston et al., 1995; Ashburner & Friston, 2000).  
Traditionally, VBA has been utilized for group comparisons, in which a sample of experimental 
subjects is compared with a matched sample of healthy control subjects.  This approach works 
best for diffuse disease processes that affect the entire brain or for focal disorders that affect 
similar anatomic regions across subjects.  Application of VBA to the study of TBI is complicated 
by its spatial heterogeneity, which can impede or even preclude adequate co-registration and 
normalization of images from different patients.  A related problem is the effect of diffuse 
volume loss or of mass effect from large lesions that distort the anatomy of the brain.  Beyond a 
certain threshold, large anatomic deformations may prevent adequate spatial co-registration to 
the normative template for application of VBA.  This failing of current VBA methods such as 
SPM may be addressed by more sophisticated techniques.  For example, voxel-based 
normalization may be applied to the full diffusion tensor, rather than to parametric scalar maps 
calculated from the diffusion tensor, which may result in improved co-registration by 
incorporating additional information such as fiber orientation (Jones et al., 2002; Park et al., 
2003; Xu et al., 2003).  Also, the newer deformation tensor-based morphometry may perform 
better than voxel-based methods in the presence of local or global anatomical distortions by 
“morphing” the patient’s brain to the normative template (Studholme et al., 2003, 2004).   
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A requirement for VBA is an appropriate template for the spatial registration and 
normalization process.  Fractional anisotropy maps provide a good template because the 
excellent contrast between gray and white matter allows for reliable registration of images 
among subjects.  Another important factor for VBA of DTI is the selection of an appropriate 
statistical threshold and cluster size for maintaining sensitivity to pathology while minimizing 
false positives.  Since VBA involves comparisons among hundreds of thousands of voxels 
throughout the entire brain, steps must be taken to reduce the false discovery rate.  One method 
is to select a high threshold for statistical significance.  Another is to require that a minimum 
number of neighboring voxels, called a “cluster”, exceed the threshold in order to attain 
statistical significance. Clustering is based on the rationale that pathology tends to be locally 
correlated rather than affecting isolated voxels widely separated in space.  In general, optimum 
values of the threshold and cluster size will vary based on the SNR and spatial resolution of the 
DTI acquisition, the DTI parameter being analyzed, and the type of pathology under 
investigation.  Smoothing of the images prior to normalization is often used in VBA to improve 
SNR, reduce inter-individual variability to facilitate image co-registration, and to help ensure a 
Gaussian distribution of intensities within a voxel to enable adequate statistical correction for 
false positive errors due to multiple comparisons (Ashburner & Friston, 2001). However, 
smoothing leads to a loss of spatial resolution which would limit detection of small lesions, and 
may actually lead to false positive results when applied to DTI (Jones et al., 2005). 

The primary benefits of voxel-based analysis of DTI over visual inspection or manual 
ROI analysis are its automated quantitative assessment of the entire brain and its operator 
independence.  Unlike ROIs, in which certain regions have to be selected in advance for 
quantitation, VBA can detect pathology in previously unsuspected brain regions.  With large 
numbers of subjects, VBA could be used to correlate quantitative DTI parameters with measures 
of functional outcome and neurocognitive performance.  Since DTI can parcellate white matter 
tracts based on fiber orientation, it may be possible to determine which neural pathways co-vary 
with specific measures of functional ability.  This approach may be especially powerful for 
longitudinal studies of therapeutic interventions, including rehabilitation.  Hence, voxel-based 
methods may prove important for fully exploiting the potential of DTI for providing quantitative 
biomarkers of TBI. 
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